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A Maximum Likelihood method is presented for the purpose of estimating the
positions of poles or zeros of certain classes of functions of a complex variable
from information on ordinate values sampled at arbitrary abscissae. General
and asymptotic properties of the method are discussed and some numerical
examples given.

1. INTRODUCTION

One of the classic problems of Numerical Analysis is the following:
Given {Zj ; j = 1, 2,... , n}, a set of distinct, complex abscissae, and cor­

responding ordinate values {gj ;j = 1,2,... , n} of some function gO, estimate
a value zo, where g(zo) = O. Slightly more generally, the given information
may also include derivative values of g(') at the given abscissae. Since a
great variety of functions, with arbitrarily placed zeros or none, could have
given rise to the observed information, it is clear that severe restrictions
must be imposed on g(') if there is to be any hope at all of estimating 2 0 •

Nevertheless, many ad hoc approaches, of which the Secant Rule and its
limiting form Newton's Method are perhaps the best known, often prove
very useful in practice - although it is well-known that this is not always
the caset

The question then arises: For a given class of functions {gO} and a given
class of observations, can one formulate a criterion for comparative assess­
ment of different techniques for estimating Zo ? If, for example, the Secant
Rule is not optimal according to such a criterion, how can a better estimate
be constructed?

Prompted by the success of the techniques of linear, optimal approximation
(Sard [12] and Davis [3]) and their reformulation within a probabilistic
context (Larkin [6]), we address the question of the previous paragraph by
relating the class {g( .)} to a Hilbert space H of analytic functions endowed
with a weak Gaussian distribution which induces a finite dimensional
probability distribution on every finite set of bounded, linear functionals
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on H. In the following section we shall see that this permits the construction
of a prior, multivariate distribution on the reciprocals of observed ordinate
values {ljg(zj);j = 1, 2,... , n} at any chosen set of distinct abscissae {Zj ;
j = 1,2,... , n}. The quantity Zo will appear as an unknown parameter in this
distribution, and can be estimated by any reasonable statistical technique
when the aforementioned ordinate values are known.

In this paper we tentatively answer the question posed by regarding as
"optimal" the Maximum Likelihood estimate of Zo (Fisher [4], or any
standard statistics text, such as Cramer [2]), since in some circumstances
it is known to be asymptotically efficient. The choice of the Maximum
Likelihood method as a standard of comparison may be open to debate
since, unlike the linear case, the issue is complicated by the possibility of
bias in the estimate. However, analytic results near the limit where the
quantities {! Zo - Zj I;j = 1, 2,... , n} are all small, as well as practical
numerical experience, seem encouraging enough to suggest that the approach
deserves further study.

In order to put the probabilistic approach into perspective, perhaps the
following discussion is in order:

Any rule for estimating the value of a bounded linear functional, which
is based on a finite number of observations on other bounded linear func­
tiolll:tls (e.g. ordinate evaluations), can, in general, produce a result with an
arbitrarily large error. It is inescapable that extra information of a non­
linear nature be available, or assumed, if even the relative error in the estimate
is to be bounded. Similar, though less sweeping, conclusions apply when
estimating the value of a non-linear functional.

According to the notions of Optimal Approximation, this necessary,
non-linear information is provided by an assumed bound on a norm or
semi-norm of the function being observed (Davis [3]; Sard [12]). In the case
of a norm bound, this is roughly equivalent to the assumption that, with
probability 1, the function lies within a hypersphere of known radius centred
on the origin in the function space in question. Thus, the effect of the non­
linear information is to provide an a priori localization of the observed
function.

By contrast, according to the probabilistic approach used here and else­
where (Larkin [6], [7], [8], [9]), the assumption of a weak Gaussian distribu­
tion, with an unspecified variance, imposes an a priori localization of a
different kind-one that is less severe in that the norm (or semi-norm)
of the observed function need not be unequivocally limited, but more severe
in that the shape of the distribution is more or less fixed. Thus, the probabil­
istic approach is similar in intent, but different in form, to the approach of
Optimal Approximation. Advantages of the probabilistic approach are
that, as well as agreeing identically with Optimal Approximation in the rules
it provides for the linear estimation problem, it also provides practically
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useful, probabilistic error estimates in the linear case and a fresh approach
to non-linear problems, such as the one considered in this paper.

From one point of view, the method of Maximum Likelihood (or any
similar statistical principle) is not an estimation rule in the sense that a
numerical analyst understands, for example, a quadrature rule or a root­
finding rule, but rather is an intuitively attractive, and widely applicable,
principle by means of which such rules can be constructed. Thus, the method
of Maximum Likelihood permits a statistician to construct a rule for estimat­
ing some unknown quantity, in terms of other, measurable quantities;
he would then expect to apply this estimation rule in many different cir­
cumstances, in much the same way as a numerical analyst might use Simpson's
Rule. Furthermore, just as the numerical analyst is interested in, say, the
truncation error of a quadrature rule and its convergence properties as the
number of observations tends to 00, so the statistician must assess similar
properties of his estimation rule, albeit dealing in terms of stochastic
variables.

If desired, an estimation rule derived using the method of Maximum
Likelihood can subsequently be divorced from its origins and treated on an
entirely ad hoc basis. Indeed, this is the approach taken in this paper with
the root-finding estimator derived in section 3, below. To SOmeone unwilling
to presuppose the weak Gaussian distribution necessary for the probabilistic
treatment one can then offer the rule to be assessed on the basis of whatever
information he is willing to assume.

However, the main point of this paper is not the production of yet another
competitor to Newton's method, and a rather complicated one at that,
but rather to support the thesis that the probabilistic alternative to Optimal
Approximation provides a unifying conceptual framework within which
such traditionally disparate problems as numerical quadrature and root­
finding can be treated on a similar basis. Indeed, investigations now in
progress, arising in connection with Remark 5 in Section 5, below, suggest
that s may be just as useful as Zo as an estimator of Zo , and perhaps more
convenient.

Numerical analysts and statisticians are both in the business of estimating
parameter values from incomplete information. The two disciplines have
separately developed their own approaches to formalizing strangely similar
problems and their own solution techniques; the author believes they have
much to offer each other.

2. PROBLEM FORMULATION

Let H denote a Hilbert space of functions analytic within some simple
domain D in the complex plane. Since we shall be concerned primarily with
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information expressed in the form of ordinate values, we shall suppose
that the linear functional of ordinate evaluation at ZED is bounded for all
such points. This means that H must possess a reproducing kernel function
(Aronszajn [1]), denoted by KL ~), with the defining properties

KLz)EH; VZED

(h, K(', z)) = h(z); Vh E Hand Vz E D.

Here the bar signifies "complex conjugate".
Now consider the class F of functions f(·) of the form

fez) =~ ; Vz ED,
Z - Zo

for any h E H and for some fixed, but unknown Zo E C. Given some fixed
fEF, we are permitted to sample its ordinate values (and possibly also
other bounded, linear functionals) at abscissae {z} ED; j = 1, 2, 3,...} and
wish to devise a reasonable procedure for estimating the value of Zo from the
observations {fez}); j = 1, 2, 3,...}, in spite of the fact that the information
available will generally be insufficient to determine f completely. Of course,
the problem of estimating the pole Zo off( -) is identical to that of estimating
the zero of the function gO mentioned in the introduction if we identify

1
g(z) = fez) ; VZED.

Following the approach developed in previous papers (Larkin [6]-[9]),
we endow H with a canonical, weak Gaussian distribution (Gross [5]) thus
inducing a multivariate, normal distribution jointly on any finite number of
bounded, linear functional values. For example (Larkin [6]), if the n-th order
vector h is defined by

h} = h(zj);j = 1,2,... , n

and the n-th order Gram matrix K is defined by

the probability density function of b E iCn is given by

p(h) = (;r! K 1-1 exp(-Ah'J(-1h), (1)

where A is the (positive, real) dispersion parameter of the canonical, weak
distribution on H. Here the prime signifies "Hermitean transpose."
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Since we cannot directly observe the values {h; ;j = 1, 2, ... , n} we in­
troduce the vector f of observable quantities defined by

h
jj = z· ~ Z

J 0

j = 1,2,... , n.

Thus, writing Z for the diagonal matrix whose j-th element is z; , we have

b = (Z - zol)f

so the Jacobian of the transformation, bearing in mind that 2n real variables
are involved, is given by

Hence, the probability density function of f E en, given ,\ and zo, may be
written as

. exp(-Af'(Z' - zo!) K-l . (Z- zoI) f).

3. FORMAL SOLUTION

The method of Maximum Likelihood consists in equating to zero the
logarithmic derivatives of p(f I '\, zo) with respect to ,\ and Zo (actually,
in the complex case, the real and imaginary parts of zo), to obtain the follow­
ing equations for ,\ and Zo , the estimates of,\ and Zo :

and

(3)

1 n 1
nI A

;=1 z; - Zo
(4)

Thus, the problem of finding a zero of the rather general function g(') has
been replaced by that of finding a root of the very special equation (4),
constructed from observations on gO. This, of course, is also typical of the
more traditional methods.
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A certain simplification can be achieved, presuming [2 # [S [2, if we now
introduce quantities

f'K-IZf
s = f'K-lf '

and

(5)

(6)

(7)

j = 1, 2, ... ,n, (8)

permitting equation (4) to be expressed in the form

(9)

This is always possible if f # 0 and the abscissae {Zj ; j = 1, 2, ... , n} are
distinct since, by the Schwarz inequality, [2 = Is 12 only if Zf is propor­
tional to f, which is absurd. In the following, we shall invariably make these
assumptions.

Although it is not immediately obvious that (4) has a solution, since both
Zo and ~o are involved, conditions sufficient for the existence of at least one
root are given below. Furthermore, one of these roots will correspond to
the global maximum of the function of Z

der TIi=l I Z - Zj 1
2

p(z [f) = constant X [f'(Z' _ Zl)K-l(Z _ zI)f]n' (10)

In practice, one might perform the following sequence of operations in
order to estimate Zo :

(i) Samplef(') at chosen points {Zj;j = 1,2,... , n}

(ii) Evaluate s, [2 and {Wj ; j = 1,2,... , n} from (5), (6) and (8).

(iii) Solve (9) for wo , by an iterative method such as that described
in section 5 below.

(iv) Invert (7) to compute

(v) Terminate if Zo is regarded as being sufficiently accurate.

(vi) Otherwise, set Zn+1 = zo, compute f(zn+1)' increment n by 1 and
repeat steps (ii), (iii), (iv), (v) and (vi).
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The numerical values of the {Wj; j = 1, 2,... , n} provide information
about the existence and location of Zo , as follows.

Making the substitutions defined in (5), (6), (7), and (8) into p(zo I
we see that (9) is the equation for a stationary point of the function of w

\lw E C. (11)

THEOREM 1. S(-) has an upper extremum in the finite part of the complex
plane if there exists w such that

Sew) > 1 (12)

Proof Observe that, as a function of the real and imaginary parts of w,
Sew) is not constant and is bounded above, by M say. Also

lim Sew) = 1
Iwl->ro

(13)

so, jf such a wexists, M > 1 and 3R such that S(v) < (M + 1)/2, v: I v I > R.
However, the bounded, continuous function S( -) must attain an upper
extremum on the compact set {w r I wi = R}, so the proposition is proved.

COROLLARY 1. Since Sew) is continuously differentiable with respect to
the real and imaginary parts of w, any upper extremum ofS will be a maximum.
Thus, condition (12) is sufficient for the existence of a root of equation (9).

COROLLARY 2. By considering the special case w = 0 we see that the
condition

is sufficient for (9) to have a root at a maximum of S(-).

THEOREM 2. S( -) has a maximum if

(14)

Proof Observe that in this case

1
1 n I

Sew) "'-' 1 - 2 Re- I Wjl
W j~l )
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for large [ W I and, by suitable choice of arg(w), this can be made to exceed 1.
The required result then follows by appealing to Theorem 1.

Remark 1. It is not hard to construct examples, necessarily violating
condition (14), in which

Sew) < 1, Vfinite w

e.g. n = 4, WI = W2 = 1/2, W3 = W4 = -1/2; in this case equation (9)
has no finite solution.

Remark 2. If SO has a maximum, so does pC- , f).
In practical computation, of particular interest is the situation where the

{Wj ; j = 1, 2,... , n} are all large, t 2 Is 12 being small, resulting in a small
value of [ Wo I, a small value of I (J" I and a correspondingly accurate estimate
Zo (see Theorem 5below). The next result provides an easily checked condition
for this.

THEOREM 3. If a is real and positive, and

1 + (1 + a2)1/2 •
I Wj I> ,a

j = It 2,... , n

then S( -) has a maximum within a complex disk of radius a, centred at the
origin.

Proof Consider that, if [ W I = a,

.i = 1,2,... , n.

Hence

i.e.

sup Sew) < S(O)
Iwl~a

which, by an argument similar to that used in Theorem 1, implies the re­
quired result.

5. ASYMPTOTIC PROPERTIES

We now consider the situation where all of the abscissae {Zj ;j = 1,2,... , n}
are very close to Zo , and derive appropriate error estimates.
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f'J(-1(~ -- zol)f f'j(-1h
a = S - Zo = f'J(-1f = f'j(-1f
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(14)

(15)

Of course, 11' j(-1 h is the squared norm of it, say, that member of H with
smallest norm subject to the constraints

LEMMA 1. The quantity t 2 - Is 12 is invariant under a uniform translation
of the {z; ; j = 1, 2,... , n} so, in particular,

O -.f- 2 __ I 12 = 2 _ I 12 = f'(~' - s1) J(-1(~ -- sl) f
T t S 7 a f' j(-1f

Furthermore

I al ~7.

The proof of this is merely a matter of algebraic manipulation, and use
of the Schwarz inequality.

Remark 3. A promising aspect of this method is that as n increases the
{I w; I; j = 1, 2,... , n} will often become very large since

(72 -- I a 12)1/2 < 7 = II ~ II :s::: l0Jl
II/II ~ II/II

where 1is that member of H with smallest norm such that

l(zj) = jj ; j = 1,2,... , n,

and 11111 should increase rapidly with n since /0 is not a member of H.
Thus, from Theorem 3, I Wo I should decrease rapidly with n even if the
abscissae {Zj ; j = 1,2,... , n} are poor estimates of zo.

Introducing the notation Y[U1U2 ... ur] to denote the (r -- I)-th. divided
difference of a function yO, based on the abscissae {Uj ; j == 1, 2,... , r},
we shall also need the following result.

LEMMA 2.
r

![Z1Z2 ... zr] = h[ZOZ1Z2 ... zr] - h(zo) . 11 (zo - Zj)-l.
j~1



364 F. M. LARKIN

Proof It is well known (ego Milne-Thomson [11]) that

r r

f[zlz 2 ... zr] = I fj il' (Zj - Zk)-\
j~1 k~1

where the prime indicates omission of the j-th. (zero) factor. But

j = 1,2,... , n

so, writing ho for h(zo),

r r

j[ZIZ2 ... zr] = I hj il' (Zj - Zk)-1
j~1 k~O

r r r

= I hj n (Zj - Zk)-1 -hon (zo - Zk)-\
j~O k~O k=1

as required.
We now introduce some quantities required for the subsequent statement

of the asymptotic results.
Recall that the operation of constructing the divided differences

{f[ZIZ2 ... zr]; r = 1, 2,... , n} from the ordinate values {fj; j = I, 2,... , n}

is linear, and also nonsingular if the abscissae {Zj ;j = 1,2,... , n} are distinct.
Denote the matrix of this operation by D and define vectors Sf and Sb, by

and

Writing p for the vector whose r~th element is given by

r
Pr = n (zo - Zj)-I;

j~1

we see from Lemma 2 that

r= 1,2,... , n (16)

Sf = Sb - hop.

Hence

f'K-l h = (H' - hop')(DKD')-IS b

and

f'K- l f = (Sb' -hop')(DKD')-I(Sb - hop).

(17)



PROBABILISTIC ESTIMATION OF ZEROS

Let A denote the matrix defined by
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(A-l) _ 1
j/C - (j _ 1)! (k - 1)1

[}H/c-2K(zo ,zo)
[}Z~-l [}Z~-l

j, k = 1,2,... , n,

where aIoZo denotes formal differentiation with respect to zo, keeping Zo
constant, and vice versa.
Let db denote the n-th order vector defined by

1
dh j = (j _ I)!

write a = A dh and define

dJ-lh(zo)
dZ~-l

j = 1,2,... , n,

b ann=--Th;
nn 0

and

Ii It II
dn = Al/2 I h I

nn 0

Observe also that, in the limit as all of the {Zj ; j = 1, 2,..., n} approach zo,

and

by a standard property of divided differences.
Assuming now, and for the rest of this section, that

(19)

(20)

I Zj - Zo I~ 1,

we obtain the following results.

LEMMA 3.

j = 1,2,... , n

n

a "" bn IT (Zj - zo)
j~l

n

7 "" dn IT I Zj - Zo I
j~l

n

(72 - I a 12)1/2 "" en IT I Zj - Zo I
j~l
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(z z) n
W k - 0 • TI I z. - Z [-1.

k"'-' C 3 0 ,
n ;=1

k=I,2, .."n. (21)

Proof. Considering the orders of magnitude of the quantities involved
in (17) and (18) and recalling (19) and (20), we see that

n

f 'K-1b",-, -ho . p'A db "'-' -anho . n (z; - ZO)-l
;~1

and
n

f 'K-1f",-, [ ho 1
2 • p'Ap "'-' Ann I ho 1

2 . n I z; - Zo [-2.
;~1

Then, from Lemma 1 and the definitions of a, T, and {Wk ; k = 1, 2,... , n}
the required results follow by simple substitution.

We are now in a position to prove the main results.

THEOREM 4. There exists a Wo satisfying equation (9) and maximizing
S( -) such that

Proof. From Lemma 3 we see that all of the quantities {! w" I; k
1, 2,..., n} can be made arbitrarily large by choosing the abscissae {Zj ;

j = 1, 2,... , n} sufficiently close to zo. Let

b ' [-1 TIn I 1-1] def 1 + (1 + a
2
)l/2= min cn ' z; - zo = ,

k #k a
say.

Then I Wk I > b; k = 1,2,... , n and, from Theorem 3, there exists Wo satis­
fying (9) such that

2b
I Wo I < a = b2 _ 1 < 1

Hence we can approximate (9) by

leading immediately to the required result, using (21).

THEOREM 5.
n

Zo - Zo "'-' bn • n (Zj - zo) "'-' a
;~l

(22)
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Proof From (7), Lemmas 1 and 3 and Theorem 4 we see that
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However, the second of the two expressions on the right hand side of this
relation is insignificant compared with the first, so the proposition is proved.

COROLLARY 3.
n

I Zo - Zo I ~ dn . IT ! Z; - Zo I .
;=1

Proof If Un is an n-th order vector with zero elements except for a
in the n-th position, we have

so, by the Schwarz inequality,

I an ! ~ (U~AUn)1I2 . (dh' A dh)1/2 r-..t A;~ II h Ii ,
and

~S::-~r-..tl
d ~ A1j2 11 It Ii .n nn·

Hence, taking absolute values of both sides of (22), the required result
follows.

Remark 4. Ann is the squared norm of that element eof H with smallest
norm satisfying the constraints.

( ~:~) = 0;
Zo

( d.n-1e) =
dzn - 1 1.

Zo

Remark 5. Since

j = 0, 1,2'00" n - 2

n

S - Zo = a r-..t bn IT (z; - zo),
j=l

from Lemma 3, it may be advantageous to use s as an estimate of Zo when
the quantities {I z; - Zo I; j = 1, 2,... , n} are all small. This avoids having
to solve the implicit equation (4), at the expense ofa small deviation from
the Maximum Likelihood estimate. The effect of this is illustrated by com-
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paring a with Zo in Table 1, below. Note that care should be exercised when
computing s since the matrix K may be ill-conditioned.

TABLE 1

Estimates of the Pole of eZ/z; K(z, w) = 1/(1 - zw); n = 3

Zt 0.5 0.5 0.05 0.00546

Z2 -0.4 0.05 0.005 -0.00987

z. -0.5 0.005 0.0005 -0.00123

a 7.4000.10-2 -1.0653.10-5 5.6574.10-8 3.3450.10-8

(T2 _ I a 1
2)1/2 1.2845.1O~1 1.8787.10-' 1.7917.10-7 9.3548.10-8

WI 3.3166 2661.5 2.7907.105 5.8365.10'

W2 -3.6903 266.20 2.7907.10' -1.0551.10"

w. -4.4688 26.671 2.7904.10' -1.3149.10'

Wo 6.0324.10-2 -1.3872.10-2 -1.3260.10-' 2.2799.10-5

Zo 8.1748.10-2 -1.3259.10-5 5.6550.10-8 3.3453.10-8

6. A NUMERICAL EXAMPLE

Let us choose H to be the Szego-Hilbert space of functions analytic
within the unit disc and square integrable around its perimeter, with inner
product

and natural norm. The functions of z {Zk; k = 0, 1, 2,...} form a complete
ortho-normal basis for H and the reproducing kernel (e.g. Meschkowski
[10]) is given by

K(z, w) = (1 - ZW)-l

The function ez is certainly a member of H, so it is legitimate to choose the
example

eZ

fez) =z; 'r/ZEC

and apply the foregoing method for the purpose of estimating the pole
Zo = 0.

Although the constants ho , Ann' an, en and dn will not normally be
required, the example has been chosen so that they are easy to evaluate,
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and so serve to confirm the asymptotic estimates derived earlier. Specifically,
it may be verified that A is the unit matrix,

ho = 1,

and

so that

1
dh j = (j _ I)! j = 1,2,... ,11

n

II h 112 t"'J I [(j - 1)!]-2
j~1

Hence, the constants appearing in the asymptotic forms of u, 7 and
(72 - I U 12)1/2 are given by

1
bn .-...J - ~---=-7'

(n - I)!

In-1 /1/2
en t"'J L~ [(j - 1) !]-2 \

and, specializing to the case n = 3, these become -0.5,1.5 and y'2 ~ 1.414,
respectively. Table 1 shows the values of various significant quantities,
resulting from different choices of Z1 , Z2, and Z3 • In each case equation (9)
was solved by the iteration

Vo = 0

k = 0,1,2,... ,

terminating at the first m for which

I Vm - Wo I < 10-8•

Table 2 illustrates a similar computation for the function

I
fez) = eO _ 1 ; \:fZE C,
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except that at each stage the list of abscissae is augmented by the previously
computed estimate of Zo .

TABLE 2

Iterations to the Pole of I/(ez - 1); K(z, w) = 1/(1 - zw)

n

m

2

0.4

0.3

8.4102.10-2

4

3

0.4

0.3

8.4102.10-'

4.7366.10-3

3

4 5

0.4 0.4

0.3 0.3
8.4102.10-' 8.4102.10-'

4.7366.10-3 4.7366.10-3

7.1363.10-6

7.1363.10-6 0(10-14)

3 2
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